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1. Background and Objective

Forest NEP in the East Asian monsoon region 

accounts for 8% of global NEP (Yu et al., 2014);

Seasonal drought generally occurs in vigorous 

growth period  of forests (Tang et al., 2014); 

The coupling between forest carbon 

and water fluxes prone suffered to 

drought stress  (Keenan et al., 2012).

Seasonal 
drought

Variations of 
carbon and 
water fluxes

Affecting 
mechanisms 
on these fluxes

Predict the trend of 
these fluxes



 Annual trends of forest carbon and water fluxes

ET β GEP RE NEP CUE

Decrease 3 2 5 2 2 1
Increase 5 1 3 5 4 3

No significant 3 3 4 5 6 8
Total 11 6 12 12 12 12

(1) Models predict:

Global dimming 
(Liepert et al., 2004)
Global dimming 
(Liepert et al., 2004)

Ecosystem productivity model 
(Zhang et al., 2013)
Ecosystem productivity model 
(Zhang et al., 2013)

ET    ,          β

NEP         CUE

(2) Direct observation more than 10 years through eddy 
covariance :
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 Interactive between environmental and biotic factors, 
drought effect
(1) Interactive between environmental and biotic factors

（2）Seasonal drought enhanced the biotic factor affecting ET

(Huxman et al., 2003) (Chen  et al., 2015)

15.2%

(Wilson and Baldocchi, 2000)

Drought effect on self-regulating
mechanisms of trees?



Quantify the contribution of environmental variability and 
biotic factors

Partial differential equation 
(Wilson et al.,2000)

Look-up Table

(Marcolla et al.,2011)

Homogeneity of 

Slopes (HOS) model
(Tekmariam et al., 2010)

Advantage Disadvantage

Drought effect on ET Only focused on ET, 
self-correlation

Quantify the contribution 
for ET and NEP

self-correlation

Quantify the contribution 
for ET and NEP, avoid 
self-correlation

Long-term observation

(Wilson et al.,2000) (Tekmariam et al., 2010)



Budyko’s aridity 
index

Dry 
season
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year
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Variation of carbon and water fluxes during 2003-2012 in a 
subtropical Coniferous Plantation in QianYanzhou site
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2.1 Site description and Flux observation

2.2 Dry season and dry year 

2.3 Homogeneith-of-slope (HOS) model
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2.1 Site description and Flux observation

Site：Qianyanzhou flux observation site 

located in Jiangxi province ( 26°44′52″N, 

115°03′47″E, elevation: 102 m)；

Climate： Subtropical monsoon climate, 

with average air temperature and 

precipitation amount of 17.3 ℃ and1464 

mm；

Dominant tree species：

Masson pine (Pinus massoniana L.), 

Chinese fir (Cunninghamia

lanceolata L.) 

Slash pine (P. elliottii E.)

2003 2012

Zhang and Wen (2015)



2.2 Dry season and dry year
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(1) Criterion ：
 Budyko’s aridity index
=  P/ PET
(Budyko, 1974; Ryu et al., 2010; Jassal et 

al., 2009 ) 
 > 1 sufficient water supply；
 <=1 drought.

(2)  Dry season：
 Dry season ：July-October during 

2003-2012；
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(1) Criterion ：

 Obviously declined EVI and gc；

 Budyko’s aridity index <=1；

(2) Dry year：

 2003, 2007, and 2010



2.3 Homogeneith-of-slope (HOS) model

Principle of HOS model (Hui et al., 2003)
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Any significant change (p<0.05) in the slope of 

the regression between NEP or ET and a given 

environmental variable among different years is 

usually assumed to indicate an indirect effect 

(changes in ecosystem structure and vegetation 

physiological processes) of an environmental variable.

To avoid the autocorrelation effect between environmental variables and estimated 

carbon and water fluxes, only the available daytime NEP and ET were analyzed.
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(1) General bimodal curve was observed for 

ET, β experienced U type；

(2) Seasonal drought decreased ET, but 

increased H and β；

HH

ββ

Seasonal

3. Seasonal drought effect on variations of water 
and carbon fluxes



Year ET H β

2003 764.3 845.5 0.45

2004 845 704.4 0.34

2005 513.6 564.7 0.45

2006 710 568.8 0.33

2007 870.5 631.8 0.3

2008 847.9 768.9 0.37

2009 891.5 721.8 0.33

2010 783.3 581.9 0.3

2011 771.5 547.7 0.29

2012 715.2 610.3 0.35

mean 771.3 654.6 0.4

SD 110.1 100.63 0.06

CV 0.14 0.15 0.16

(3) The max. and min. annual 

β was consistent with H.

(4) The coefficient of 

variation (CV) was similar in 

ET, H and β.

Interannual

3. Seasonal drought effect on variations of carbon 
and water fluxes
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Affecting factor

(1) ET was mainly influenced by annual Rn；

(2) H was dominated by VPD_dry (June-

October), this residual  was mainly 

influenced by P_dry.

ETET HH
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Sw_5cm_dry (m3 m-3)
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Affecting factor

(1)  β was mainly dominated by SW_5cm_dry;

(2)  The effective precipitation frequency_dry

indirectly affect β through its influence 

SW_5cm_dry.

ββ
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Annual trends

(1)  No significant annual trends was observed for ET and H，β exhibited marginally 

significant decreasing trend；

(2)  SW_5cm_dry and EPF_dry exhibited significant increasing trend；

(3) Annual β may decrease further and the warming effect of available energy to the surface 

air may decline. The warming effect may increased for  forests,  and offset the carbon fixed 

ability due to low albedo (Wickham et al., 2013). 
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(1) General bimodal curve 

was observed for GEP, RE and 

NEP, no specific curve was 

observed for CUE；

(2) NEP decreased more than 

other carbon fluxes in response 

to seasonal drought；

Seasonal variation

3. Seasonal drought effect on variations of carbon and 
water fluxes



Year GEP RE NEP CUE
2003 1693.5 1241.1 452.4 0.27
2004 1818.4 1320.9 497.5 0.27
2005 1611 1257.8 353.2 0.22
2006 1801.4 1328.6 472.8 0.26
2007 1775.7 1356.8 418.9 0.24
2008 1726.7 1348.2 378.5 0.22
2009 1805.3 1429.6 375.8 0.21
2010 1796.1 1490.7 305.4 0.17
2011 1766.5 1424.9 341.7 0.19
2012 1980.9 1491.5 489.4 0.25
mean 1777.6 1369 408.6 0.23
SD 95.58 88.11 67.3 0.03
CV 0.05 0.06 0.16 0.15

(3) The max. and min. 

annual GEP was 

consistent with RE；

(4) The max. and min. 

annual CUE was 

consistent with NEP ；

(5) The annual NEP 

and CUE experienced 

higher coefficient of 

variation (CV).

Interannual variation
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(1) GEP and RE mainly dominated by SW_5cm_dry;

(2) CUE mainly dominated by SW_20cm_dry ；

(3) NEP was mainly affected by EVI_dry；
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Annual trends

(1)  Increased annual trends was observed for GEP (marginally) and RE，CUE exhibited 

significant decreasing trend；

(2) Annual CUE may decrease further as SW_20cm_dry and EPF_dry continue increased, 

the carbon fixed efficiency along with forest age may decline further.



(1) HOS model better matched the 

seasonal and interannual

variation of NEP and ET, as well 

as the drought effect.
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4. Quantify the drought effect on carbon 
and water fluxes



Seasonal
environmental
variability (%)

Interannual
environmental
variability (%)

Functional
changes (%)

Error
(%)

NEP 60.4 10.6 11.3 17.7

NEP_dry 44.7 7.5 16.3 31.5

NEP_wet 72.5 8.4 3.8 15.3

ET 71.6 14.1 5.9 8.3

ET_dry 70.5 6.3 4.7 18.4

ET_wet 72.2 14.3 5.5 8.1

(2) Environmental variability rather than functional changes dominated 

the interannual variability of both ET and NEP；

(3) Compared with NEP, ET was more resistant to drought stress 

through the self-regulating mechanisms of this plantation. 

 regulation of leaf stomata, extraction of deep soil water, trophic structure.



5. Conclusion

(1) Although no significant trends was observed for ET and NEP, if the 

SW_5cm_dry, SW_20cm_dry and EPF_dry continued increased as the past 

10 years, the available energy partitioning for ET and the carbon fixed 

efficiency may increase and decrease further, respectively.

(2) Environmental variability rather than functional changes dominant the 

interannual variation of  ET and NEP. The ET was more resistant to drought 

stress, and can be attribute the severely depressed carboxylation processes, 

and the low concentration of osmotically active substances in coniferous trees. 




